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We have investigated the effects of absorption on the properties of the zero-n̄ gap in one-dimensional
photonic crystals consisting of alternating layers of air and a metal-based left-handed material �LHM�. Calcu-
lations are performed by using two different models for the dielectric permittivity and magnetic permeability
of the LHM component. It is shown that the dispersion curves and the corresponding density of states around
the zero-n̄ gap, which is insensitive to the geometrical scaling of the structure in the absence of absorption, are
drastically modified by these effects. Specifically, it is demonstrated that absorption creates photon states inside
the gap and the resulting band structure exhibits a band gap of zero width. The equation determining the
frequency at which the corresponding bands touch each other is reported. Another consequence of these effects
is that, for weak and moderate absorption, both the dispersion relation and the density of states exhibit a
pseudogap structure which tends to disappear in the limit of strong absorption.
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I. INTRODUCTION

The propagation of electromagnetic waves in regular ar-
rays of materials with different refractive indices, commonly
called photonic crystals,1 has received much attention in the
last two decades. This interest is motivated by the interesting
basic electromagnetic properties of these structures and by
their potential applications in a wide range of optical de-
vices. These applications are intimately related to the exis-
tence of photonic band gaps in the dispersion relation of such
structures which allows the active control and manipulation
of the properties of electromagnetic radiation.2 It is then very
important to study in detail those situations and phenomena
that can affect the properties of such gaps. In that respect, it
is well known that conventional photonic band gaps originat-
ing from the interference of Bragg scattering are highly sen-
sitive to the lattice constant, incident angle, and disorder.
This may substantially limit the use of Bragg gaps for the
control and manipulation of electromagnetic radiation.

One way to overcome some of these limitations is to re-
alize photonic crystals containing left-handed metamaterials
�see Ref. 3 and references therein�. This suggestion is based
on the following observations. The main physical property of
these metamaterials is that both the dielectric permittivity
���� and magnetic permeability ���� are negative in some
frequency ranges; as a result, they also exhibit a negative
index of refraction. Due to this, left-handed metamaterials
exhibit unusual physical properties, some of which, such as
inverse Snell’s law, reversed Doppler and Cherenkov effects,
and a Poynting vector directed opposite to the wave vector,
were discussed by Veselago in his 1968 work.4 It has been
shown5–11 that one-dimensional �1D� photonic crystals com-
posed of alternating layers of right-handed material �RHM�
and left-handed material �LHM� exhibit new types of elec-
tromagnetic properties that do not exist in ordinary structures
constituted only of RHM. In particular, it was shown5 the
existence of a new type of band gap that corresponds to the
frequency at which the spatial average of the refractive in-
dex, taken over a period of the 1D photonic structure, van-

ishes. In contrast with the Bragg gap, such a zero-n̄ gap is
insensitive to the geometrical scaling of the structure and to
structural disorder that is symmetric in the random param-
eters a and b, where a and b are the widths of the RHM and
LHM layers, respectively.

It should be pointed out that these properties of the zero-n̄
gap were established in the absence of losses. However, as
shown for metamaterials based on wires and split ring
resonators,12–14 which are characterized by large losses that
are mainly due to the optical losses in their metallic compo-
nents, left-handed metamaterials are by their nature necessar-
ily dispersive and dissipative �see Ref. 3�. This means that, in
the study of the properties of the zero-n̄ gap, it is necessary
to take into account effects of absorption. These observations
have motivated us to study theoretically such effects, which,
up to now, have not received special attention.

Finally, it should be pointed out that the influence of ab-
sorption on the properties of conventional photonic crystals
has been investigated by various authors. Of course, in order
to study these effects, it is necessary to consider photonic
crystals fabricated with absorbing materials, such as metals.
In correspondence with this, absorbing materials, such as
metallic roads15–17 and spheres,18 as well as GaAs cylinders19

embedded in a host dielectric medium have been used in
such studies.

The paper is organized as follows. In Sec. II, we detail the
theoretical approach. Section III is concerned with the results
and discussion. Finally, our conclusions are given in Sec. IV.

II. THEORETICAL FRAMEWORK

The photonic structure we consider here consists of alter-
nating and homogeneous layers of materials A and B, peri-
odically distributed along the z axis, and with dielectric per-
mittivity and magnetic permeability given by �1���, �1���
and �2���, �2���, respectively. We choose the origin of co-
ordinates to be at the center of a given A layer and define
d=a+b as the period of the corresponding photonic crystal,
where a and b are the widths of layers A and B, respectively.
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In what follows, we focus on the normal propagation of a
monochromatic electromagnetic wave through the consid-
ered photonic crystal. Under these conditions, the dispersion
relation of such a structure can be obtained by solving the
equation for the amplitude E�z� of the electric field,5,20

−
1

��z�
d

dz
� 1

��z�
dE�z�

dz
� =

�2

c2 E�z� , �1�

where ��z�=��z+d� and ��z�=��z+d� are the periodic di-
electric permittivity and periodic magnetic permeability, re-
spectively. For simplicity, in Eq. �1� we have omitted the
explicit dependence of these optical parameters on the fre-
quency. Thus, the continuity of the two-component function,

��z� = � E�z�
1
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and the Bloch condition,

��z + d� = eikd��z� , �3�

lead immediately to the following expression for the disper-
sion relation:20
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Q1= �
c
	�1����1���, Q2= �

c
	�2����2���, and ni

=	�i���	�i���, with i=1,2, are the corresponding refractive
indices; k in Eqs. �3� and �4� is the Bloch wave vector along
the axis of the photonic crystal that relates the electric field
in two consecutive unit cells by the factor exp�ikd�.

Now, the properties of the relation between the wave vec-
tor k and frequency � determined by Eq. �4�, as well as of
the corresponding Bloch modes, depend on the geometrical
and physical parameters characterizing the considered pho-
tonic crystal, i.e., on the physical conditions under which
these modes propagate. In fact, in the absence of losses the
solutions of Eq. �4� determine the band structure of the con-
sidered system with allowed zones separated by band gaps. If
� is inside an allowed band, k is real and the corresponding
Bloch modes propagate along the axis of the photonic crys-
tal. Inside a band gap, k is complex and an electromagnetic
wave cannot propagate in the system. As is well known, the
effects of losses can be considered by including the imagi-
nary part of the dielectric permittivity and magnetic perme-
ability in the calculations. This means that f��� in Eq. �4� is
complex and therefore the wave vector k and the frequency
� are in general complex. Writing

�a� k = k1 + ik2, �b� � = �1 − i�2, �6�

the imaginary parts k2 of k and �2 of � determine, respec-
tively, the attenuation length l and the lifetime � of the modes
according to the following definitions:

�a�
1

l
= 2k2, �b�

1

�
= 2�2, �7�

where �2�0.
In accordance with the above discussion, in the study of

the effects of losses on the properties of Bloch modes, it is
necessary to establish clearly the exact correspondence be-
tween the physical conditions under which these modes
propagate and the mapping determined by Eq. �4� between
the points in the k and � complex planes. In that respect, two
different physical approaches or mapping have been
considered.15,21 In one of them, the wave vector k is assumed
to be real and the frequency � complex. Physically, this ap-
proach corresponds to the situation where an arbitrary Bloch
mode is excited, acquiring a finite lifetime, and then it de-
cays as time progresses. In the other one, the frequency � is
real and the wave vector k is in general complex. In this case,
the Bloch mode at a given � is attenuated as it propagates
through the photonic crystal, and the attenuation length l in
Eq. �7� accounts for the effects of absorption and/or photonic
band gaps. Note that the latter effect is also present in the no
absorbing case.

III. RESULTS AND DISCUSSION

In order to study the effects of absorption on the proper-
ties of the zero-n̄ gap, we focus on RHM-LHM photonic
crystals for which the constituting materials are air �layer A,
with �1=1 and �1=1� and a metal-based LHM �layer B�. It
is well known that, in the study of these metamaterials, the
Lorentz model and its derivatives as well as the Drude model
have been used �see Ref. 22 and references therein�. These
studies indicate that both models may be used for modeling
the properties of these structured materials. Based on these
observations, we first consider the metal-based LHM of the
considered photonic crystals modeled via the lossy Drude
polarization and magnetization models. This means that the
permittivity and permeability of layer B follow the plasma-
like dispersion,

�2��� = �0 −
�p

2

��� + i�p�
, �8�

�2��� = �0 −
�m

2

��� + i�m�
, �9�

where �0, �0, �p, and �m are material parameters, �=2	
 is
the angular frequency measured in gigahertz, and �p and �m
are absorption constants. It should be pointed out that, in the
absence of absorption, some authors8,20 have studied the
properties of this type of 1D photonic crystals, including
their band structure and the zero-n̄ gap. In our theoretical
calculations, we take �0=1.21, �0=1, �p=�m=10 GHz and
suppose, for simplicity, that �p=�p� and �m=�m�, where �
is a dimensionless absorption parameter.

Let us now consider the solutions of Eq. �4�, which may
be rewritten as
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cos�k1 + ik2�d = f1��� + if2��� , �10�

for � real and k=k1+ ik2 complex, where f1��� and f2���
are, respectively, the real and imaginary parts of the function
f��� in Eq. �4�. According to Eq. �10�, the study of the Bloch
modes in this approach reduces to the study of the solutions
of a set of two transcendental equations for three variables
k1, k2, and �. Of course, only one of them is independent.
Taking k1 as the independent variable, the relations ��k1� and
k2�k1� determine, respectively, the dispersion relation of the
photonic crystal and the dependence on k1 of the correspond-
ing attenuation length. The real part k1 of the Bloch wave
vector k is restricted to the first Brillouin zone −	 /d�k1
�	 /d.

In order to illustrate the effects of absorption on the
zero-n̄ gap, we have calculated the two photonic bands asso-
ciated with such a gap for two different values of the ratio
a /b and various values of the width a of layer A �air� and of
the absorption parameter �. Figures 1 and 2 display a mag-
nification of these bands as a function of the reduced Bloch
wave vector �=k1d /	. As =b /d=1 / �1+a /b� determines
the filling fraction of the LHM layer as a function of the ratio
a /b, it takes the values =2 /3 and 1/3 in Figs. 1 and 2,
respectively.

We first note that, ignoring quantitative difference, the
results depicted in Fig. 1, for a /b=0.5, are very similar to
those displayed in Fig. 2, for a /b=2. The quantitative differ-
ence between these results is mainly determined by effects
associated with the filling fraction. Note, in particular, that
these effects directly affect both the width and center of the
band gap, as well as the degree of curvature of the dispersion

relation 
see Figs. 1�a� and 2�a��. Now, in panels 1�a� and
2�a� we present the mentioned band structure in the absence
of absorption ��=0�. In each one of these figures we have
also plotted a line indicating the frequency 
0=�0 /2	 at
which the corresponding zero-n̄ gap opens.5 As expected, the
zero-n̄ gap is insensitive to the geometrical scaling of the
structure.

Further, when absorption is taken into account, the n̄=0
condition cannot be satisfied and instead of a band structure
possessing a zero-n̄ gap another type of band structure
should form. As shown in Figs. 1 and 2, the structure exhib-
its a band gap of zero width for any ��0. It follows from
Eq. �10� that touching the corresponding bands occurs at the
center of the Brillouin zone ��=0� and at the frequency 
C
=�C /2	 for which

f2��C� = 0. �11�

As shown in Figs. 1 and 2, the frequency 
C is practically
independent of the width a, for given values of the ratio a /b
and of the absorption parameter �, and it is a slowly varying
function of �, for a fixed value of the ratio a /b. Moreover, it
is clearly seen that the properties of the dispersion curves are
drastically modified by absorption, especially in the case of
moderate and strong absorptions. Note, in particular, that
touching the bands at �=0 occurs with finite derivative
d� /d�, i.e., the group velocity �g��� at �=0 is different from
zero for any finite value of the absorption parameter �. Also,
it follows from the numerical results depicted in Figs. 1 and
2 that, for a given value of the Bloch wave vector � near the
center of the Brillouin zone, the group velocity �g���, which
is determined by the slope of the dispersion curve, decreases
with the absorption parameter �. These results indicate that
the density of states �DOS� ����, which is proportional to the
reciprocal of the group velocity, is a finite and increasing
function of � for � near �C 
see Eq. �11��. As a result,
absorption creates photon states inside the band gap, giving
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FIG. 1. Photonic band structure of a 1D photonic crystal com-
posed of alternating layers of air and a LHM with �2��� and �2���
given by Eqs. �8� and �9�, respectively, for a /b=0.5, with a
=6 mm �solid lines 1�, a=12 mm �dotted lines�, and a=16 mm
�solid lines 2�, and for different values of the absorption parameter
�. The frequency 
=� /2	 is presented as a function of �=k1d /	
for the two bands associated with the corresponding zero-n̄ gap. 
C

satisfies Eq. �11� and 
0 is the frequency at which the corresponding
zero-n̄ gap opens.
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rise to a redistribution of such states in the system due to the
conservation of the number of total photon states.

Furthermore, it is obvious that, for a better understanding
of the above results, it is necessary to know the asymptotic
solution of Eq. �10� for small values of the reduced Bloch
wave vector � and for � near �C. In order to obtain such a
solution, we first focus on the behavior of the imaginary part
k2��� of k around the frequency 
C=�C /2	. In Fig. 3, the
dimensionless quantity 2dk2���, which is the reciprocal of
the attenuation length �in units of the period d�, is depicted as
a function of the frequency 
=� /2	 for a given value of the
ratio a /b and various values of the absorption parameter �. It
follows from Fig. 3 that the properties of the attenuation
length are dramatically modified by absorption, especially
for moderate and strong absorptions. One sees that, for a
fixed value of �, k2 is a multiple-valuated function of 
,
which takes on two values for a given value of 
; one of
these values is the negative of the other. This is the expected
results because Eq. �10� is unchanged under the substitution
k→−k. Of course, the propagation direction of modes corre-
sponding to positive values of k2 is opposite to that of modes
associated with negative values. For �=0 and for weak and
moderate absorptions, k2��� exhibits both a maximum and a
minimum at 
=
C, whereas it is a slowly varying function of

 in the limit of strong absorption. Hence, for the considered
values of the absorption parameter �, we may consider that
dk2 /d�=0 at 
=
C. So, taking into account the latter condi-
tion as well as Eq. �11�, it is not difficult to obtain the ex-
pression �for ��0�

� − �C = �
		f1

2��C� − 1

�df2/d���=�C

��� �12�

for the mentioned asymptotic solution of Eq. �10�, where the
plus and minus signs correspond to the frequency ranges �
��C and ���C, respectively. Thus, around the center of
the Brillouin zone, the frequency ��k1� is essentially a linear
function of the Bloch wave vector k1 and, therefore, the
group velocity is practically independent of k1.

As discussed before, the DOS plays an important role in
the description and understanding of the effects of absorption
on the zero-n̄ gap. Due to this, we now present a detailed

study of such a quantity for the considered photonic crystals.
In our approach, we may define the DOS as the number of
wave vector k1 per unit cell of the crystal for a given fre-
quency �,

���� =
1

N

k1

�
� − ��k1�� , �13�

where N is the number of unit cells in the photonic crystal.
Replacing the summation over k1 by an integration in k1
space and using Eq. �10�, it is not difficult to obtain the
following expression for ���� in terms of f = f1���+ if2���:

���� = �Re�−
1

2	

df/d�

	1 − f2�� . �14�

In Figs. 4 and 5, the DOS obtained from Eq. �14� is plotted
as a function of the frequency 
=� /2	, for the same param-
eters a /b and � as in Figs. 1 and 2, and in a frequency range
where the corresponding zero-n̄ gap is localized. In Fig. 4,
we displayed the results for a=6 mm �solid lines� and a
=12 mm �dotted lines�, whereas in Fig. 5, a=12 mm �solid
lines� and a=18 mm �dotted lines�.

We first note that, ignoring quantitative difference, the
properties of ���� and its evolution with the absorption pa-
rameter �, for a /b=0.5 and 2, are very similar. As expected,
in the absence of absorption, ���� is equal to zero inside the
zero-n̄ gap and is infinite at both edges of it 
see Figs. 4�a�
and 5�a��. As is clearly seen in panels �b�–�d� of Figs. 4 and
5, these singularities are removed in the presence of absorp-
tion and ���� takes finite values inside the corresponding
gaps. A similar phenomenon occurs in photonic crystals with
conventional photonic band gaps �see Ref. 15�. We also ob-
serve that, for weak and moderate absorptions, ���� and
therefore the corresponding dispersion relation exhibit a
pseudogap structure, which tends to disappear in the limit of
strong absorption. In the latter case, ���� is practically inde-
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FIG. 3. Imaginary part 2dk2 of the wave vector 2dk as a func-
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pendent of � in the considered frequency range 
see Figs.
4�d� and 5�d��. This is the expected result because, according
to Eq. �12� and Figs. 1�d� and 2�d�, the frequency ��k1� is
essentially a linear function of the Bloch wave vector k1 and,
therefore, d� /dk1 is practically independent of k1. Further, as
mentioned above, absorption creates photon states inside the
band gap, giving rise to a redistribution of such states in the
system. Results depicted in Figs. 4 and 5 reveal that such a
redistribution of states involves mainly those states for which
� is near the band edges �for �=0�.

It is interesting to note that, using Eq. �14�, we can rewrite
the dispersion relation in Eq. �12� as �−�C= � ��� /2���C�;
as a result, the corresponding group velocity �g��� is propor-
tional to the reciprocal of the density of states at �=�C.

Let us briefly compare the above results with those ob-
tained when another type of dispersion for both �2��� and
�2��� is used in Eq. �10� to model the LHM component of
the photonic crystal. In order to perform the calculations we
use the effective physical parameters,

�2�
� = 1 +
52

0.92 − 
�
 + i�1�
+

102

11.52 − 
�
 + i�2�
, �15�

�2�
� = 1 +
32

0.9022 − 
�
 + i�m�
, �16�

which have been frequently used �see Refs. 5, 9, and 20� to
studying the properties of the zero-n̄ gap in the absence of
absorption. In these equations, 
=� /2	 is the frequency
measured in gigahertz and �1, �2, and �m are absorption
constants, which, for simplicity, we take as �1=�2=�m
=0.9�, where � is a dimensionless absorption parameter.
Figure 6 displays the associated photonic bands and DOS in
a frequency range where the corresponding zero-n̄ gap is
localized. Comparing these results with those depicted in
Figs. 1, 2, 4, and 5 we note that they show essentially the
same physical behaviors.

IV. CONCLUSIONS

In this paper we have investigated the effects of absorp-
tion on the properties of the zero-n̄ gap in 1D photonic crys-
tals consisting of alternating layers of air and a metal-based
LHM. In this study, we calculated the photonic band struc-
ture and the corresponding DOS by using two different mod-
els for the physical parameters �2��� and �2��� characteriz-
ing the LHM component. It is demonstrated that the band
structure of the considered photonic crystals around the
zero-n̄ gap, which is insensitive to the geometrical scaling of
the structure in the absence of absorption, is drastically
modified by these effects. Specifically, it is shown that ab-
sorption creates photon states inside the gap and the resulting
band structure exhibits a band gap of zero width. Another
interesting consequence of these effects is that, for weak and
moderate absorptions, the dispersion relation and the corre-
sponding DOS exhibit a pseudogap structure which tends to
disappear in the limit of strong absorption. We stress that our
analysis can be readily extended in order to treat the effects
of absorption on the remainder gaps of the considered system
or on the band gaps of any other 1D photonic crystal for
which its dispersion relation satisfies a transcendental equa-
tion similar to Eq. �10�. According to the latter equation, the
dispersion relation of any one of these 1D photonic crystals
only exhibits band gaps of zero width in the presence of
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FIG. 6. Dispersion curves and density of states of a photonic
crystal composed of alternating layers of air and a LHM with �2�
�
and �2�
� given by Eqs. �15� and �16�, respectively, for a /b=2,
with a=12 mm �solid lines� and a=16 mm �dotted lines�, and for
different values of the absorption parameter �. 
C satisfies Eq. �11�
and 
0 is the frequency at which the zero-n̄ gap opens.
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absorption. Note that the frequencies at which the corre-
sponding bands touch each other are the zeros of f2��� 
see
Eq. �11��, i.e., Eq. �11� is the null-gap condition in the pres-
ence of absorption.
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